Unit-2: Arithmetic and logic unit

Syllabus: Arithmetic and logic unit: Look ahead carries adders. Multiplication: Signed
operand multiplication, Booths algorithm and array multiplier. Division and logic
operations. Floating point arithmetic operation, Arithmetic & logic unit design. IEEE
Standard for Floating Point Numbers

Carry Look-Ahead Adder

Motivation behind Carry Look-Ahead Adder :

In ripple carry adders, for each adder block, the two bits that are to be added are
available instantly. However, each adder block waits for the carry to arrive from its
previous block. So, it is not possible to generate the sum and carry of any block until the
input carry is known. The block waits for the block to produce its carry. So there will be
a considerable time delay which is carry propagation delay.

A B A B
A3 By Aa Bo 1 1 0 0
1 - bit 1 - bit 1 - bit 1 - bit
) Full Adder |& Full Adder Full Adder
< Full Adder *
C C
4 2
Jr J' < Y
Ss S, ; .

Consider the above 4-bit ripple carry adder. The sum is produced by the corresponding
full adder as soon as the input signals are applied to it. But the carry inputis not
available on its final steady state value until carry is available at its steady state value.
Similarly depends on and on. Therefore, though the carry must propagate to all the
stages in order that output and carry settle their final steady-state value.
The ripple-carry adder. its limiting factor is the time it takes to propagate the carry. The
carry look-ahead adder solves this problem by calculating the carry signals in advance,

based on the input signals. The result is a reduced carry propagation time.

To be able to understand how the carry look-ahead adder works. we have to manipulate
the Boolean expression dealing with the full adder. The Propagate P and generate G in a
full-adder. is given as:

Pi= A @ B: Carry propagate

Gi = AiBs Carry generate
Notice that both propagate and generate signals depend only on the input bits and thus

will be valid after one gate delay.

Prepared By: Mr. Vishal Jayaswal Page 1
A.P. In Deptt. Of CSE MIET Meerut

B > i S
Cin ‘4/

Cout
|
The new expressions for the output sum and the carryout are given by:
Si = Pi @ Ci-]
Civi= G+ PiG
These equations show that a carry signal will be generated in two cases:
1) if both bits A; and B; are 1
2) if either A; or B; is 1 and the carry-in C; is 1.
Let's apply these equations for a 4-bit adder:
Ci=Go + PoCo
Co=Gy + PC =Gy + P (G + PCy) =Gy + PGy + PPCy
C_‘l.= G: + PJCE = Gl + P:G| + P:P]G.:p + P1P|P[]C“
Ci=G; + P:C: = Gs + P:G: + PP-Gy + P:P-PGy + PsP-PP,Cy
Bi P3 | Coul
o - | P>
G3 3 | 53
a
Bl
' P2
A oo kP2 = >— s:
Gz Carry look
Bl ahead
Al P1 P 51
adder o bl =—0 >—
&G
o FO
X @ eo so
G0
C T
Prepared By: Mr. Vishal Jayaswal Page 2

A.P. In Deptt. Of CSE MIET Meerut

Multiplication Algorithms:

23 10111 Multiplicand
19 x 10011 Multiplier
10111
10111
00000 +
00000
10111
437 110110101 Product

Hardware Implementation for Signed-Magnitude Data:

The multiplier is stored in the Q register and its sign in Qs. The sequence counter SC is
initially set to a number equal to the number of bits in the multiplier. The counter is
decremented by 1 after forming each partial product. When the content of the counter
reaches zero, the product is formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum of A and B
forms a partial product which is transferred to the EA register. Both partial product and
multiplier are shifted to the right. This shift will be denoted by the statement shr EAQ to
designate the right shift

Figure 10-5 Hardware for multiply operation.

| B register | | Sequence counter (SC)
/
Complementer and
parallel adder
1 (rightmost bit)

¢
0 —b-E—b-l A register I—I—| @ register [

The least significant bit of A is shifted into the most significant position of Q, the bit from
E is shifted into the most significant position of A, and 0 is shifted into E. After the shift,
one bit of the partial product is shifted into Q, pushing the multiplier bits one position to
the right. In this manner, the rightmost flip-flop in register Q, designated by Qn will hold
the bit of the multiplier, which must be inspected next.

Hardware Algorithm:

Initially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are
in Bs and Qs respectively. The signs are compared, and both A and Q are set to
correspond to the sign of the product since a double-length product will be stored in
registers A and Q. Registers A and E are cleared and the sequence counter SC is set to a

Prepared By: Mr. Vishal Jayaswal Page 3
A.P. In Deptt. Of CSE MIET Meerut

number equal to the number of bits of the multiplier. We are assuming here that
operands are transferred to registers from a memory unit that has words of n bits. Since
an operand must be stored with its sign, one bit of the word will be occupied by the sign
and the magnitude will consist

of n - 1 bits.

Figure 106 Flowchart for multiply operation

M lri ply oper ation

!

Multiplicand in &
Multiplier in &

r

A: FQ:@'B:
Q; ~ . P8,
A~0,E+~0
SC+—mnm — 1

END
(product is in A Q)

After the initialization, the low-order bit of the multiplier in Q, is tested. If it is a 1, the
multiplicand in B is added to the present partial product in A. If it is a 0, nothing is done.
Register EAQ is then shifted once to the right to form the new partial product The
sequence counter is decremented by 1 and its new value checked. If it is not equal to
zero, the process is repeated and a new partial product is formed. The process stops
when SC = 0. Note that the partial product formed in A is shifted into Q one bit at a time
and eventually replaces the multiplier. The final product is available in both A and Q,
with A holding the most significant bits and Q holding the least significant bits.

Example: Multiplicand =23
Multiplier=19

Prepared By: Mr. Vishal Jayaswal Page 4
A.P. In Deptt. Of CSE MIET Meerut

TABLE 10-2 Mumerical Example for Binary Mulriplier

Multiplicand B = 10111 E A Q sC
Multiplier in Q 0 00000 10011 101
&, =1;add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100
. =1; add B 10111
Second partial product 1 00010
Shift right EAQ 0 10000 01100 011
Q. = 0; shift right EAQ 0 01000 10110 010
. = 0; shift right EAQ 0 00100 01011 o0
2. =1; add B 10111
Fifth partial product (1] 11011
Shift right EAQ 0 01101 10101 000

Final product in .AQ = 0110110101

Question: Show the contents of registers E, A, Q, and SC during the process of
multiplication of two binary numbers, 11111 (multiplicand) and 10101
(multiplier). The signs are not included.

Solution:
Multiplicand B =11 111 = (31)10 31 x 21 =651
E _A Q SC
Multiplier in Q - - 0 00000 10101 101 Q= (21)10
Q,=1,addB - - - 11111
0 11111
shr EAQ --- - 01111 11010 100
Qn=0, shr EAQ - - 00111 11101 011
Qp=1,add B - - 11111
1 00110
shr EAQ - - - - 0 10011 01110 010
Qn=0, shr EAQ - - 01001 10111 001
Qp=1,add B - - 11111
1 01000
shrEAQ --- - 1010001011 000
(65D),,

Booth Multiplication:

Booth algorithm gives a procedure for multiplying binary integers in signed-2's
complement representation.

The hardware implementation of Booth algorithm requires the register configuration
shown in Fig. 10-7. This is similar to Fig. 10-5 except that the sign bits are not separated
from the rest of the registers. To show this difference, we rename registers A, B, and Q,

Prepared By: Mr. Vishal Jayaswal Page 5
A.P. In Deptt. Of CSE MIET Meerut

as AC, BR, and QR, respectively. Qn designates the least significant bit of the multiplier in
register QR. An extra flip-flop Qn+1 is appended to QR to facilitate a double bit inspection
of the multiplier.

The flowchart for Booth algorithm is shown in Fig. 10-8. AC and the appended bit Qn+1
are initially cleared to 0 and the sequence counter SC is set to a number n equal to the
number of bits in the multiplier. The two bits of the multiplier in Qn and Qn+1 are
inspected. If the two bits are equal to 10, it means that the first 1 in a string of 1's has
been encountered. This requires a subtraction of the multiplicand from the partial
product in AC. If the two bits are equal to 01, it means that the first 0 in a string of 0's
has been encountered. This requires the addition of the multiplicand to the partial
product in AC. When the two bits are equal, the partial product does not change. An
overflow cannot occur because the addition and subtraction of the multiplicand follow
each other. As a consequence, the two numbers that are added always have opposite
signs, a condition that excludes an overflow. The next step is to shift right the partial
product and the multiplier (including bit Qn+1). This is an arithmetic shift right (ashr)
operation which shifts AC and QR to the right and leaves the sign bit in AC unchanged.
The sequence counter is decremented and the computational loop is repeated n times.

Figure 10-7 Hardware for Bocth algorithm.

BR register Sequence counter (5C)
Y
Complementer and
paralle]l adder
'E.q 'En+ 1
1 b
AC register — QR register —1
Prepared By: Mr. Vishal Jayaswal Page 6

A.P. In Deptt. Of CSE MIET Meerut

Multiply

Multiplicand in BR
Multiplier in Q8

AC= 0
Oy = 0O
SO+~ n

[] L
AC~AC+BR + 1 =1 AC+~AC+ BR
E L N
ashr (AC & QR)}
SC+8SC— 1
"0 =0
sc
EMND

Figure 10-8 Booth algorithm for multiplicaton of signed-2's complement
numbers.

A numerical example of Booth algorithm is shown in Table 10-3 for n = 5. It shows the
step-by-step multiplication of (- 9) x (- 13) = + 117. Note that the multiplier in QR is
negative and that the multiplicand in BR is also negative. The 10-bit product appears in
AC and QR and is positive. The final value of Qn+1 is the original sign bit of the multiplier
and should not be taken as part of the product.

Prepared By: Mr. Vishal Jayaswal Page 7
A.P. In Deptt. Of CSE MIET Meerut

TABLE 103 Example of Multiplication with Boodh Algorithm

BR = 10111

(e D BRrR + 1 = 01001 AC OR L s

Imitial [10011 (n] 101
1 O Subtract B8R 01001
01001

ashr 00000 1 1001 1 100

i i ashr [tai [l 01 100 1 o011
0 1 Add BR 10111
11001

ashr 11 100 10110 0 [0i [}

a 0 ashr 11110 01011] 001
| Subtract BF 01001
00111

ashr W01 1 10101 1 L]

Question: Show the step-by-step multiplication process using Booth algorithm when
the following binary numbers are multiplied. Assume 5-bit registers that
hold signed numbers. The multiplicand in both cases is + 15.
a.(+15)x(+13)
b.(+15) X (-13)
Solution:

(@)
(+15) x (+13) = +195 = (0 011000011),

BR = 01111 (+15); BR + 1 = 10001 (—=15); QR = 01101 (+13)

Qn Qn+’] AC QR gm E

Initial 00000 01101 O 101
10 Subtract BR 10001
10001

ashr ——— 11000 10110 1 100
01 Add BR 01111
00111

ashr ——— 00011 11011 O 011
10 Subtract BR 10001
10100

ashr — 11010 01101 1 010

11 ashr — 11101 00110 1 001
01 Add BR 01111
01100

ashr ——— 00110 00011 O 000
+195

Prepared By: Mr. Vishal Jayaswal Page 8

A.P. In Deptt. Of CSE MIET Meerut

(+15) x (=13) = =195 = (1100 111101)2's comp.
BR=0 11111 (+15); BR +1=10001 (-15): QR = 10011 (—13)
QnQn+1 AC QR Qu SC
Initial 00000 10011 O 101
10 Subtract BR 10001
10001
ashr ——— 11000 11001 1 100
11 ashr ——— 11100 01100 1 011
01 add BR 01111
01011
ashr ——— 00101 10110 O 010
00 ashr—— 00010 11011 O 001
10 Subtract BR 10001
10011
ashr ——— 11001 11101 1 000
—-195
Array Multiplier:

Checking the bits of the multiplier one at a time and forming partial products is a
sequential operation that requires a sequence of add and shift micro-operations. The
multiplication of two binary numbers can be done with one micro-operation by means
of a combinational circuit that forms the product bits all at once. This is a fast way of
multiplying two numbers since all it takes is the time for the signals to propagate
through the gates that form the multiplication array. However, an array multiplier
requires a large number of gates, and for this reason it was not economical until the
development of integrated circuits.

The first partial product is formed by means of two AND gates. The second partial
product is formed by multiplying al by b1 b0 and is shifted one position to the left. The
two partial products are added with two half-adder (HA) circuits.

A combinational circuit binary multiplier with more bits can be constructed in a similar
fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as many
levels as there are bits in the multiplier. The binary output in each level of AND gates is
added in parallel with the partial product of the previous level to form a new partial
product. The last level produces the product. For j multiplier bits and k multiplicand bits
we need j x k AND gates and (j - 1) k-bit adders to produce a product of j + k bits.

Prepared By: Mr. Vishal Jayaswal Page 9
A.P. In Deptt. Of CSE MIET Meerut

ag
b, bg
b, by

ay ag R

albl ﬂlbo al bl bn

HA HA

C S c 8
b oo
c3 €, <, co

Division:

Division is somewhat more complex than multiplication but is based on the same
general principles. First, the bits of the dividend are examined from left to right, until
the set of bits examined represents a number greater than or equal to the divisor; this is
referred to as the divisor being able to divide the number. Until this event occurs, Os are
placed in the quotient from left to right. When the event occurs, a 1 is placed in the
quotient and the divisor is subtracted from the partial dividend. The result is referred to
as a partial remainder.

The division follows a cyclic pattern. At each cycle, additional bits from the dividend are
appended to the partial remainder until the result is greater than or equal to the divisor.
As before, the divisor is subtracted from this number to produce a new partial
remainder. The process continues until all the bits of the dividend are exhausted.

00001101 <—— Quotient
Divisor ——s- 1011 /10010011 <—— Dividend

10114
001110

1011
Partial ““:; ::
remainders —_—

100 == Remainder

Figure .15 Example of Division of Unsigned
Binary Integers

A machine algorithm that corresponds to the long division process.

Prepared By: Mr. Vishal Jayaswal Page 10
A.P. In Deptt. Of CSE MIET Meerut

The divisor is placed in the M register, the dividend in the Q register. At each

step, the A and () registers together are shifted to the left 1 bit. M is subtracted from
A to determine whether A divides the partial remainder.” If it does, then Q, gets a
1 bit. Otherwise, Q; gets a 0 bit and M must be added back to A to restore the previ-
ous value. The count is then decremented, and the process continues for n steps. At
the end. the quotient is in the O register and the remainder is in the A register.

This process can, with some difficulty, be extended to negative numbers. We
give here one approach for twos complement numbers. An example of this ap-
proach is shown in Figure 9.17.

The algorithm assumes that the divisor V' and the dividend D are positive and
that [V| < |D|. If [V| = |D|, then the quotient @ = 1 and the remainder R = 0. If
|V| = |D|, then @ = 0 and R = D. The algorithm can be summarized as follows:

1. Load the twos complement of the divisor into the M register: that is, the M reg-
ister contains the negative of the divisor. Load the dividend into the A, Q) reg-
isters. The dividend must be expressed as a 2n-bit positive number. Thus, for
example, the 4-bit 0111 becomes 00000111.

Shift A, Q) left 1 bit position.
Perform A <— A — M. This operation subtracts the divisor from the contents of A.

Fad

4. a. If the result is nonnegative (most significant bit of A =), then set Q, < 1.

b. If the result is negative (most significant bit of A = 1), then set Q, < 0 and
restore the previous value of A.

|'_"

Repeat steps 2 through 4 as many times as there are bit positions in Q).
6. The remainder is in A and the quotient is in Q.

A0

M « Divisor
Q) « Dividend
Count < n

No . Yes

Q0
Q1 I AcA+M

No Count = 07 Yes m Quotient in Q
Remainder in A

Figure 9.16 Flowchart for Unsigned Binary Division

Prepared By: Mr. Vishal Jayaswal Page 11
A.P. In Deptt. Of CSE MIET Meerut

A Q
0000 0111 Initial value
0000 1110 Shift
1101 Use twos complement of 0011 for subtraction
1101 Subtract
0000 1110 Restore, set Q=0
0001 1100 Shift
1101
1110 Subtract
0001 1100 Restore, set Q=0
0011 1000 Shift
1101
0000 1001 Subtract, set Qy = 1
0001 0010 Shift
1101
1110 Subtract
0001 0010 Restore, set Q= 0

Figure .17 Example of Restoring Twos Complement Division (7/3)

Floating Point Representation:

We can represent a floating point number in the form

+S x B*E
This number can be stored in a binary word with three fields:
« Sign: plus or minus
« Significand S
* Exponent E

Sign of

significand % bits 23 bits >

™ | Biased exponent Significand

(a) Format

The base B is implicit and need not be stored because it is the same for all numbers.

Prepared By: Mr. Vishal Jayaswal Page 12
A.P. In Deptt. Of CSE MIET Meerut

The principles used in representing binary floating-point numbers are best ex-
plained with an example. Figure 9.18a shows a typical 32-bit floating-point format.
The leftmost bit stores the sign of the number (0 = positive, | = negative). The
exponent value is stored in the next 8 bits. The representation used is known as a
biased representation. A fixed value, called the bias, is subtracted from the field to
get the true exponent value. Typically, the bias equals (25~! — 1), where k is the
number of bits in the binary exponent. In this case, the 8-bit field yields the numbers
0 through 255. With a bias of 127 (27 — 1). the true exponent values are in the range
—127 to +128. In this example. the base is assumed to be 2.

A normalized number is one in which the most significant digit of the significand is
nonzero. For base 2 representation, a normalized number is therefore one in which the
most significant bit of the significant is one.

Thus, a normalized nonzero number is one in the form

+1.bbb...b x 2*E

where b is either binary digit (0 or 1). Because the most significant bit is always one,
it is unnecessary to store this bit; rather, it is implicit.

IEEE Standard for Binary Floating-Point Representation

The IEEE standard defines both a 32-bit single and a 64-bit double format (Figure 9.21),
with 8-bit and 11-bit exponents, respectively. The implied base is 2.

Stl)g“ <8 Bits 23 Bits
it .

N Biased Fraction

exponent

(a) Single format
Sign -<—11 Bits 52 Bits
bit Biased Fracti

exponent raction

(b) Double format
Figure 9.21 1EEE 754 Formats

Arithmetic Circuit:

The arithmetic microoperations listed in Table 4-3 can be implemented in one
composite arithmetic circuit. The basic component of an arithmetic circuit is the parallel
adder. By controlling the data inputs to the adder, it is possible to obtain different types
of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder
circuits that constitute the 4-bit adder and four multiplexers for choosing different
operations. There are two 4-bit inputs A and B and a 4-bit output D. The four inputs
from A go directly to the X inputs of the binary adder. Each of the four inputs from B are

Prepared By: Mr. Vishal Jayaswal Page 13
A.P. In Deptt. Of CSE MIET Meerut

connected to the data inputs of the multiplexers. The multiplexers data inputs also
receive the complement of B.

The other two data inputs are connected to logic-0 and logic-1. Logic-0 is a fixed voltage
value (0 volts for TTL integrated circuits) and the logic-1 signal can be generated
through an inverter whose input is 0. The four multiplexers are controlled by two
selection inputs, S1 and So. The input carry Cin goes to the carry input of the FA in the
least significant position. The other carries are connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic sum:

D=A+Y+Cin

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary number at
the Y inputs of the binary adder. Cin is the input carry, which can be equal to 0 or 1. Note
that the symbol + in the equation above denotes an arithmetic plus. By controlling the
value of Y with the two selection inputs S1 and So and making Cin equal to O or 1, it is
possible to generate the eight arithmetic microoperations listed in Table 4-4.

Cin
5
Sa
Ay Xa Ca
5
So FA b— D,
By — 0 4x1 _
,| o | Mux — 1o i
2
— 3
Ay I x, L
&
S FA —
B, 1 ? 4l ¥, G
2
— 3
Az X; Cz
5
Sa Fa — Dy
B + 0 Gl
2 %] MUX Tz C’!
—— 2
fp— 3
Az f—v X Gy
_| '51
'Sli Fa Dy
By -+ 0 4
3 L% | ML }‘3 C-n.
2
3
0 _.—]>o— 1 Cou
Figure 4-9 4-bit arithmetic circuit.
Prepared By: Mr. Vishal Jayaswal Page 14

A.P. In Deptt. Of CSE MIET Meerut

addition

subtraction

increment

decrement

Aj
B;

YYUU

Select

Input Output
s &% C. Y D=A+Y+Cyu Microoperation
0 0 0 B D=A+ B Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+E Subtract with borrow
0 1 1 B D=A+F +1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A4-1 Decrement A
1 1 1 1 D=A Transfer A

When 55, = 00, the value of B is applied to the Y inputs of the adder.
IfCyn = 0, theoutputD = A + B.IfC,, = 1,outputD = A + B + 1. Both cases
perform the add micooperation with or without adding the input carry.

When 5,5, = 01, the complement of B is applied to the Y inputs of the
adder. If C, = 1, then D = A + B + 1. This produces A plus the 2's comple-
ment of B, which is equivalent to a subtraction of A — B. When C;, = 0, then
D = A + B. This is equivalent to a subtract with borrow, that is, A — B — 1.

When 5,5, = 10, the inputs from B are neglected, and instead, all0’s are
inserted into the Y inputs. The nutput becomes D = A + 0 + G, This gives
D= AwhenC,=0and D = A + 1 when C,, = 1. In the first case we have
a direct transfer from input A to output D. In the second case, the value of A
is inademented by 1.

When 5,5, = 11, all 1's are inserted into the Y inputs of the adder to
produce the decrement operation D = A — 1when C,, = 0. This is because a
number with all 1's is equal to the 2's complement of 1 (the 2's complement
of binary 0001 is 1111). Adding a number A tothe 2's complementof 1 produces
F=A +2scomplementof1=A — 1. When(C, =1, thenD=A4 -1+ 1=
A, which causes a direct transfer from input A to output D. Note that the
micooperation D = A is generated twice, so there are only seven distinct
microoperations in the arithmetic circuit.

Figure 4-10 Ome stage of logic circuit.

S —
So ——

4x1
MUX

S Sp| Output Operation

— Ei o o| E=ArB | AND
0 1| E=AvBE |OR
E=A®B| XOR

1 1| E=A Complement

(b) Function table

(a) Logic diagram

Prepared By: Mr. Vishal Jayaswal Page 15

A.P. In Deptt. Of CSE MIET Meerut

	Carry Look-Ahead Adder

